¹³C NMR SPECTRA OF ALLENES

R. Steur, J.P.C.M. van Dongen, M.J.A. de Bie and W. Drenth Laboratory for Organic Chemistry of the University, Croesestraat 79, Utrecht, the Netherlands. J.W. de Haan and L.J.M. van de Ven Department of Instrumental Analysis, Technical University, Eindhoven, the Netherlands.
(Received in UK 19 July 1971; accepted for publication 28 July 1971)

Allenes are very interesting compounds in ¹³C NMR spectroscopy because of the extremely low field shift of the central allenic carbon reported by Friedel *et al.*¹ ($\delta^{13}C = -15$ ppm relative to CS_2). As far as we know no more ¹³C NMR data on allenes have been reported.

With an independent MO theory of diamagnetism Pople² calculated $\delta^{13}c = +35 \text{ ppm}$ relative to CS₂ for the central carbon atom. Ditchfield *et al.*³ using *ab initio* MO theory with a basis of contracted Gaussian functions calculated $\delta^{13}c = +5.8 \text{ ppm}$ from CS₂.

In view of the obvious lack of ¹³C NMR data on allenes and the unique applicability of this technique to the study of charge distribution in these otherwise rather "inaccessible" molecules, we found it worthwhile to communicate some of our preliminary results.

Proton noise decoupled 13 C NMR spectra were measured at 25.16 MHz on neat liquids (unless stated otherwise) at probe temperature on Varian HA-100 and XL-100/15 NMR spectrometers. Results are given in tables I and II.

For a given alkyl substituent there is a fair linear relationship between the number of these substituents and δC_{β} of the allenes. Considered as a constitutive property⁴, a methyl group contributes +3.3 ppm to C_{β} while an ethyl group contributes +4.8 ppm. The group contribution of a S-alkyl substituent is 7 ± 2 ppm. To estimate the group contributions of other substituents more allenes are being measured.

	substituents				13 _C chemica	l shifts (ppm) ³
R ₁ R ₂	R3	R4	δCα	δCβ	δCγ	H 9
H H	сн ₅	сн ₅	121.6 b	-13.6 b	100.3 b	174.2(CH ₃)
CH ₃ H CH ₃ CH ₃	СH СH,	н СН,	108.3	-13.4 ⁻ - 6.5	108.3 ⁻ 101.1	173.0(cH_)
с _о щ н	CoH5	СН	100.5	-10.3	100.5	171.6(CH2) 180.5(CH2)
∎ с∎ ₃	BCH ₃	н	103.4 ^c	- 8.3 ^c	100.6 ⁰	178.8(CH ₂) 178.5(SCH ₂)
. н н	сн ₃	SCH ₃	113.6	- 9.9	93.8	174.3(CH ₂) 178.0(SCH ₂)
H	C2H5	scH ₃	111.5°	- 9.3°	86.5 [°]	X
н	i-c ₃ H7	scn ₃	111.9	- 8.2	81.5	171.4(CH ₃) 161.0(CH) 178.2(SCH ₃)
н	CH ₅	sc ₂ H5	114.7	-10.3	95.8	173.8(CH ₃) 166.9(CH ₉) 178.9(CH ₃ -CH ₂ S)
H H	$i-c_3H_7$	sc ₂ H5	112.9	- 8.2	83.7	171.5(СН ₃) 161.0(СН) 167.0(СН ₃)
с ₆ н ₅ с ₆ н	5 c ^H 5	c ₆ ^H 5	80.1 ^d	-15.8 ^d	80.1 ^đ	$56.3(a_1)$ $65.3(c_p)$ 64.3 , $64.4(c_o, c_m)$

3308

No. 36

ŧ

1

onosubstituted	allenes	and	COI	responding	alkenes.
				X−C _α H=	° _β ^H 2
	¥3			20	 7 4

Table II. ¹³C chemical shifts^a of mo

	A-0,	απ=υβ=υγπ	2		α	<u>π-υαμ-υβμ</u> 2	
substituent X	δCα	δCβ	δCγ	δX	δCα	δC _β	
	118.9 ^b	-19.8 ^b	118.9 ^b		70.4°	70.4 [°]	
CHz	109.3 ^a	-16.7 ^d	119.6 ^d		57•5°	77.8°	
C H E	102.0 ^d	-15.2 ^d	118.4 ^d		53.0°	80.4 [°]	
SCH	103.7	-12.4	112.4	178.7	59•4 ^e	84.8 [°]	
SC,H_	105.2	-13.2	112.8				
OCH	70.6	- 8.3	103.4	138.5	40.5 ^f	109.6 ^f	
oc, H ₅	72.0	- 8.6	104.1	129.6(CH ₂) 179.4(CH ₃) 39.7 ^f	108.5 ^f	
C _A H ₅	99.2	-16.6	115.0	- /	54•9 ^e	79.1 ⁰	
Br	121.0	-13.9	109.9		78.1 [°]	71.6°	
COOH	105.6 ⁶	-24.0 ⁶	113 .7⁶	21 .4⁸	64.0 [°]	60.0°	
CN	113.2	-25.0	126.5	80.2	85.5°	55•4°	
сн ₂ scн ₃	105.1	-16.8	117.6	160.4(СН ₂) 178.9(СН ₃)		

a: see Table I note ^a. b: 40% ^v/v solution $CCl_4/acetone-d_6$ 2:1, at -50°C. c: ref. 5. d: ref. 1. e: see Table I note ^C. f: ref. 6. g: saturated solution in CHCl₂.

Symmetry requires that no interaction occurs between the two perpendicular *n*-systems in allenes. In fact these m-systems are not isolated between C_{α} and C_{β} or C_{β} and $C_{\gamma},$ but they extend into the $C_{\gamma}H_{\gamma}$ or $C_{\alpha}HX$ fragment respectively, because these fragments contain orbitals which have the correct π -symmetry for interaction. However, if we neglect for the moment this extension of the $\pi\text{-systems}$, we may compare the $\,\delta C_{\,\beta}\,$ of monosubstituted allenes with the δC_B of the corresponding vinyl compounds (Table II, Fig. 1). Although Fig. 1 shows a quite appreciable scatter, the linear correlation

indicates a parallelism in these chemical shifts, but, in view of the slope of about 0.35, the vinyl C -atom is much more sensitive to the substituent effect than the allenic C_{β} -atom is. Clearly the termination of both π -systems at C_{β} is an oversimplification.

When, for each allenic compound of Table II, δC_{β} is plotted against δC_{γ} , a linear relation appears (Fig. 2). The slope of approximately -0.7 reflects the presence of a reverse relation between δC_{β} and δC_{γ} in these compounds. The following explanation may account for these observations. An electron donation from substituent X into the "extended" $C_{\alpha}C_{\beta}C_{\gamma}HH$ π -system, resulting in an increased shielding at C_{β} , leaves the substituent X somewhat electron deficient. This deficit may result in a "back donation" to substituent X from C_{γ} and C_{β} , via the "extended" $C_{\gamma}C_{\beta}C_{\alpha}HX$ π -system. Hence an electron donation into the $C_{\alpha}C_{\beta}fragment$, similar to the donation in the vinyl compounds, is accompanied by an electron withdrawal from the $C_{\beta}C_{\gamma}$ part of the molecule and vice versa.

We are extending this work to a larger series of substituted allenes and to cumulenes with three to five double bonds.

Acknowledgement. We are indebted to the referee for an useful suggestion.

References

1. R.A. Friedel, H.L. Retcofsky, J. Amer. Chem. Soc., 85, 1300 (1963).

2. J.A. Pople, Mol. Phys., 7, 301 (1964).

3. R. Ditchfield, D.P. Miller, J.A. Pople, Chem. Phys. Lett., <u>6</u>, 573 (1970).

4. G.B. Savitsky, K. Namikawa, J. Phys. Chem., <u>68</u>, 1956 (1964).

5. G.B. Savitsky, P.D. Ellis, K. Namikawa, G.E. Maciel, J. Chem. Phys., <u>49</u>, 2395 (1968).

6. K. Hatada, K. Nagata, H. Yuki, Bull. Chem. Soc., Jap., <u>43</u>, 3195 (1970).